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Abstract

This thesis numerically investigates the influence of Cattaeno-Christov heat flux

and chemical reaction of the flow past a stretching sheet through a porous medium.

The partial differential equations governing the flow problem are converted to or-

dinary differential equations using similarity transformation. In order to solve the

ODEs, the shooting technique is implemented in MATLAB. The influence of phys-

ical parameters such as magnetic field parameter, Prandtl number, thermophoresis

parameter, Brownian motion parameter, relaxation time parameter and chemical

reaction parameter on the velocity profile, temperature distribution, concentration

profile, skin friction coefficient, Nusselt number and Sherwood number are studied

and presented in graphical and tabular forms. The results show that increasing

the values of Casson fluid parameter, the velocity profile decreases while the tem-

perature profile increases. Enhancing the values of the relaxation time parameter,

the temperature profile is decreased. Due to the ascending values of the chemical

reaction parameter, the numerical values of the local Nusselt number are decreased

while the local Sherwood number is increased.
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Chapter 1

Introduction

In general, the conventional fluids utilized in many industrial processes, such as

water, ethylene glycol, and engine oil, are poor heat conductors due to their low

thermal conductivities. If a little portion of nanoparticles (such as Cu, Ag, TiO2

and Al2O3) is immersed into a conventional fluid, a new category of fluids is

obtained which is called nanofluids [1]. Nanofluids paved a new pathway to in-

novations in the improvement of the characteristics of heat transfer. There is a

wide variety of nanoparticles which are categorised according to their size, shape,

thermal and electrical conductivity and heat transfer abilities. Yacob et al. [2]

conducted an investigation of a nanofluid’s boundary layer flow across a stretch-

ing/shrinking sheet with a convective boundary condition. The impact of heat

generation or absorption on the constant free convection flow of a nanofluid across

a perforated vertical plate with vacuum or injection was examined by Chamkha

and El-Kabeir [3]. They used an implicit finite difference approach for the solution

of problem. Mahdy et al. [4] tested the influence of a stretched sheet on mixed

convection flow and rate of heat transfer in nanofluids. In comparison to pure

water, they discovered that nanofluids had a higher rate of heat transfer at their

thermal boundary layer and vertical stretching surface. Nanofluids have various

applications in industrial devices, heat exchanger [5], drug delivery, medicines, car

radiators, cooling of heat exchanging equipments, transformer oil cooling, elec-

tronic cooling [6, 7]. The diameter of the suspended nanoparticle varies between

1
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1 to 100nm. There appears a dramatic boost in the thermophysical properties of

the conventional fluid when the nanoparticle are suspended in it.

In 2006, Buongiorno [8] presented a detailed discussion on convective transport

system in nanofluids. He encountered the fact that Brownian diffusion and ther-

mophoresis are the primary mechanisms for the improvement rate of heat transfer

and deduced that the immense fluctuations of temperature in the boundary layer

zone result in a noticeable reduction in fluid’s viscosity which as a consequence

leads to a rise in the coefficient of heat transfer.

Tiwari and Das [9] in 2007, further devised a model for the examination of

nanofluid and heat transfer within a two-sided lid-driven square cavity and an-

alyzed the role of nanoparticle volume fraction. They emphasized on the prime

role of nanoparticle volume fraction for evaluating the impact of nanoparticles in

the fluid flow and rate of heat transfer. Yang et al. [10] mentioned that, the ther-

mal conductivity of nanofluid relies highly on nanoparticle’s volume fraction and

their different properties such as diameter and shape.

Khan and Pop [11] were able to generate first ever paper work on laminar flow of

nanofluids over a stretching sheet emphasizing that the behaviour can also be well

observed in nanofluids. Hady et al. [12] performed similar experiments depicting

behaviours of nanofluids over a stretching sheet. Wang [13] were the first who the-

oretically and experimentally noted down the flow towards a shrinking sheet. Out

of many significant characteristics, the most advanceed to grasp interest are MHD

and thermal radiation affects on nanofluids. Nadeem et al. [14] used honotopy

method to observe two dimensional flow of heat transfer considering Williamson

nanofluids, these nanofluids are various non-eleastic fluids. His work was followed

by Prasannakumara et al. [15] analysing chemical activity on a porous medium.

One of the fluids that defies Newton’s laws is the Casson fluid, which may be ben-

eficial in applications involving blood flow. Vijayaragavan and Karthikeyan [16]

gave a thorough discussion of the MHD Casson fluid included the Hall, Dufour

and thermal radiation properties. For the MHD flow of Casson liquid, Hayat et

al. [17] examined the influence of the Soret and Dufour effects. The Casson fluid

has been used in the creation of polymers, silicon suspensions, and printer ink [18].
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Moreover, Pramanik [19] has studied the heat transfer in the Casson nanofluid flow

by including the thermal radiation. Recent research [20–22] have described various

elements of these flows utilizing the Casson fluid. Kamran et al. [23] reported an

analysis of an MHD Casson nanofluid flow considering the Joule heating and slip

boundary conditions.

Magnetohydrodynamics is a topic related to fluid mechanics with an applied mag-

netic field and classical electromagnetism. It has numerous engineering uses, in-

cluding in welding, solar energy collectors, reactor cooling and crystal formation.

Sarveshanand and Singh [24] carry out the two-dimensional, electrically conduct-

ing free convective fluid flow between porous plates. Madhura and Iyengar [25]

have explored the mass and heat energy effects on MHD nano-fluid flow over a

stationary/moving plate that is drenched in a spongy medium. Mabood et al. [26]

being the former in this field investigated MHD boundary layer flow over a nonlin-

ear stretching sheet. MHD stagnation point was theoretically and experimentally

targeted by Ibrahim et al. [27]. Bhatti et al. [28] critically evaluated Reynolds

number relation to magnetic field. This work was taken on experimental basis by

Xuan and Li. [29] who took volume percentage into consideration this time. The

Jha and Aina [30] for MHD natural convention flow travelling through a vertical

microchannel by taking induced magnetic field into account reveal a closed-form of

the mixture. They claimed that as the magnetic Prandtl number and Hartmann

number increase, the induced magnetic field acts as an increasing function. The

presentation of heat tranfer on two phase model with affects of MHD and thermal

radiation was made in its earliest form by Sheikhouslani et al. [31]. Magnetic

field parameters, Brownain motion, heat production and thermal profile where

evaluated by Poply et al. [32] under the effects of MHD. Chamkha and Aly [33]

successfully described MHD boundary layer flow with convective slip flow under

the effects of heat. Ahmed et al. [34] and Ganga et al. [35] also contributed sinifi-

cantly by considering magnetohydrodynamics in the fluid flow problems.

Porous medium is a material having pores, which means that the pores are fully

connected and filled with the fluid, and fluid may flow through the voids. The

use of porous media with nanofluid increases the efficiency of thermal systems
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because porous media increases contact surface area while nanoparticles increase

thermal conductivity [36]. The characteristics of porosity are examined by Sumi-

rat et al. [37]. In porous media, heat transport and nanofluid flow were addressed

by Mahdi et al. [38].

Heterogeneous and homogeneous systems are two types of chemical reactions. As

discussed by Magyari and Chamkha [39], the concentration rate in most chemical

reaction processes is determined by the species itself. Das [40] demonstrated the

impact of chemical reactions and radiation on the heat and mass exchange along

with the MHD flow. Chamkha and Rashad [41] analyzed the effect of chemical

reactions on MHD flow when heat is produced or absorbed by a uniform vertical

permeable surface.

1.1 Thesis Contributions

The present analysis is dedicated to the numerical solution of mathematical model

governing an MHD Casson nanofluid flow with Cattaneo-Christov heat flux model

and chemical reaction. By using appropriate transformations, the proposed non-

linear PDEs are changed into an ODE system. The shooting technique is used to

determine the numerical values of the nonlinear ODEs. The numerically obtained

results are computed by using MATLAB. Graphs and tables have been used to

discuss the effects of important factors on the distributions of velocity f ′(ζ), tem-

perature θ(ζ) and concentation φ(ζ) as well as the skin friction coefficient Cf , local

Nusselt number Nux and local Sherwood number Shx.

1.2 Layout of Thesis

A brief overview of the contents of the thesis is provided below.

Chapter 2 includes some basic definitions and terminologies, which are useful

to understand the concepts discussed later on.
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Chapter 3 provides the proposed analytical study of MHD Casson nanofluid

flow, heat transmission and mass transfer across a stretched sheet. The numerical

results of the governing flow equations are derived by the shooting technique.

Chapter 4 extends the proposed model flow discussed in Chapter 3 by including

the impacts of Cattaneo-Christov heat flux model and chemical reaction.

Chapter 5 provides the concluding remarks of the thesis.

References used in the thesis are mentioned in Biblography.



Chapter 2

Preliminaries

Basic definitions and guiding principles are presented in this chapter. These will

be useful in the succeeding chapters.

2.1 Some Basic Terminologies

Definition 2.1.1 (Fluid)

“A fluid is a substance that deforms continuously under the application of a shear

(tangential) stress no matter how small the shear stress may be.” [42]

Definition 2.1.2 (Fluid Mechanics)

“Fluid mechanics is that branch of science which deals with the behavior of the

fluid (liquids or gases) at rest as well as in motion.” [43]

Definition 2.1.3 (Fluid Dynamics)

“The study of the motion of gases, liquids and plasmas from one place to another.

It has many useful applications which are use in our daily life such as, mass flow

rate of petroleum passing through pipelines, prediction of weather, etc.” [43]

6
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Definition 2.1.4 (Fluid Statics)

“The study of fluid at rest is called fluid statics.” [43]

Definition 2.1.5 (Viscosity)

“Viscosity is defined as the property of a fluid which offers resistance to the move-

ment of one layer of fluid over another adjacent layer of the fluid. Mathematically,

µ =
τ
∂u
∂y

,

where µ is viscosity coefficient, τ is shear stress and ∂u
∂y

represents the velocity

gradient.” [43]

Definition 2.1.6 (Kinematic Viscosity)

“It is defined as the ratio between the dynamic viscosity and density of fluid. It

is denoted by ν. Mathematically,

ν =
µ

ρ
.” [43]

Definition 2.1.7 (Thermal Conductivity)

“The Fourier heat conduction law states that the heat flow is proportional to the

temperature gradient. The coefficient of proportionality is a material parameter

known as the thermal conductivity which may be a function of a number of vari-

ables.” [44]

2.2 Types of Fluid

Definition 2.2.1 (Newtonian Fluid)

“A real fluid, in which the shear stress is directly proportional to the rate of shear

strain (or velocity gradient), is known as a Newtonian fluid.” [43]



Basic Terminologies 8

Definition 2.2.2 (Non-Newtonian Fluid)

“A real fluid in which the shear stress is not directly proportional to the rate of

shear strain (or velocity gradient), is known as a non-Newtonian fluid.

τxy ∝
(
du

dy

)m
; m 6= 1,

τxy = µ

(
du

dy

)m
.” [43]

Definition 2.2.3 (Ideal Fluid)

“A fluid, which is incompressible and has no viscosity, is known as an ideal fluid.

Ideal fluid is only an imaginary fluid as all the fluids, which exist, have some vis-

cosity.” [43]

Definition 2.2.4 (Real Fluid)

“A fluid, which possesses viscosity, is known as a real fluid. In actual practice, all

the fluids are real fluids.” [43]

Definition 2.2.5 (Magnetohydrodynamics)

“Magnetohydrodynamics(MHD) is concerned with the mutual interaction of fluid

flow and magnetic fields. The fluids in question must be electrically conducting

and non-magnetic, which limits us to liquid metals, hot ionised gases (plasmas)

and strong electrolytes.” [45]

2.3 Types of Flow

Definition 2.3.1 (Steady Flow)

“If the flow characteristics such as depth of flow, velocity of flow, rate of flow at

any point in open channel flow do not change with respect to time, the flow is said

to be steady flow. Mathematically,



Basic Terminologies 9

∂Q

∂t
= 0,

where Q is any fluid property.” [43]

Definition 2.3.2 (Unsteady Flow)

“If at any point in open channel flow, the velocity of flow, depth of flow or rate of

flow changes with respect to time, the flow is said to be unsteady. Mathematically,

∂Q

∂t
6= 0,

where Q is any fluid property.” [43]

Definition 2.3.3 (Compressible Flow)

“Compressible flow is that type of flow in which the density of the fluid changes

from point to point or in other words the density (ρ) is not constant for the fluid,

Mathematically,

ρ 6= k,

where k is constant.” [43]

Definition 2.3.4 (Incompressible Flow)

“Incompressible flow is that type of flow in which the density is constant for the

fluid. Liquids are generally incompressible while gases are compressible, Mathe-

matically,

ρ = k,

where k is constant.” [43]

Definition 2.3.5 (Rotational Flow)

“Rotational flow is that type of flow in which the fluid particles while flowing along

stream-lines, also rotate about their own axis.” [43]
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Definition 2.3.6 (Irrotational Flow)

“Irrotational flow is that type of flow in which the fluid particles while flowing

along stream-lines, do not rotate about their own axis then this type of flow is

called irrotational flow.” [43]

Definition 2.3.7 (Internal Flow)

“Flows completely bounded by a solid surfaces are called internal or duct flows.” [42]

Definition 2.3.8 (External Flow)

“Flows over bodies immersed in an unbounded fluid are said to be an external

flow.” [42]

2.4 Modes of Heat Transfer

Definition 2.4.1 (Heat Transfer)

“Heat transfer is a branch of engineering that deals with the transfer of thermal

energy from one point to another within a medium or from one medium to another

due to the occurrence of a temperature difference.” [44]

Definition 2.4.2 (Conduction)

“Due to collision of molecules in the contact form, heat is transferred from one

object to another object. This phenomenon is called conduction. Such type of

heat transfer occurs in the solids.” [44]

Definition 2.4.3 (Convection)

“Convection heat transfer is usually defined as energy transport effected by the

motion of a fluid. The convection heat transfer between two dissimilar media is

governed by Newtons law of cooling.” [44]
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Definition 2.4.4 (Thermal Radiation)

“Thermal radiation is defined as radiant (electromagnetic) energy emitted by a

medium and is solely to the temperature of the medium.” [44]

2.5 Dimensionless Numbers

Definition 2.5.1 (Prandtl Number)

“It is the ratio between the momentum diffusivity ν and thermal diffusivity α.

Mathematically, it can be defined as

Pr =
ν

α
=

µ
ρ

k
Cpρ

Pr =
µCp
k

where µ represents the dynamic viscosity, Cp denotes the specific heat and k

stands for thermal conductivity. The relative thickness of thermal and momentum

boundary layer is controlled by Prandtl number. For small Pr, heat distributed

rapidly corresponds to the momentum.” [42]

Definition 2.5.2 (Eckert Number)

“It is the dimensionless number used in continuum mechanics. It describes the

relation between flows and the boundary layer enthalpy difference and it is used

for characterized heat dissipation. Mathematically,

Ec =
u2

Cp∇T

where Cp denotes the specific heat.” [42]

Definition 2.5.3 (Skin Friction Coefficient)

“The steady flow of an incompressible gas or liquid in a long pipe of internal D.
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The mean velocity is denoted by uw. The skin friction coefficient can be defined

as

Cf =
2τ0
ρu2w

where τ0 denotes the wall shear stress and ρ is the density.” [46]

Definition 2.5.4 (Nusselt Number)

“The hot surface is cooled by a cold fluid stream. The heat from the hot surface,

which is maintained at a constant temperature, is diffused through a boundary

layer and convected away by the cold stream. Mathematically,

Nu =
qL

k

where q stands for the convection heat transfer, L for the characteristic length and

k stands for thermal conductivity.” [47]

Definition 2.5.5 (Sherwood Number)

“It is the nondimensional quantity which shows the ratio of the mass transport by

convection to the transfer of mass by diffusion. Mathematically:

Sh =
kL

D
,

where L is characteristics length, D is the mass diffusivity and k is the mass trans-

fer coeffcient.” [48]

Definition 2.5.6 (Reynolds Number)

“It is defined as the ratio of inertia force of a flowing fluid and the viscous force

of the fluid. Mathematically,

Re =
V L

ν
,

where V denotes the free stream velocity, L is the characteristic length and ν

stands for kinematic viscosity.” [43]
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2.6 Governing Laws

Continuity Equation

“The principle of conservation of mass can be stated as the time rate of change

of mass fixed volume is equal to the net rate of flow of mass across the surface.

Mathematically, it can be written as

∂ρ

∂t
+∇.(ρu) = 0.” [44]

Momentum Equation

“The momentum equation states that the time rate of change of linear momentum

of a given set of particles is equal to the vector sum of all the external forces acting

on the particles of the set, provided Newtons Third Law of action and reaction

governs the internal forces. Mathematically, it can be written as:

∂

∂t
(ρu) +∇.[(ρu)u] = ∇.T + ρg.” [44]

Energy Equation

“The law of conservation of energy states that the time rate of change of the total

energy is equal to the sum of the rate of work done by the applied forces and

change of heat content per unit time.

∂ρ

∂t
+∇.ρu = −∇.q +Q+ φ,

where φ is the dissipation function.” [44]

2.7 Shooting Method

To elaborate the shooting method, take into account the subsequent nonlinear

boundary value problem.



Basic Terminologies 14

h′′′(ζ) = h(ζ)h′′(ζ) + h′2(ζ)− h(ζ)h′(ζ)

h(0) = 0, h′(0) = 1, h′(J) = 0.

 (2.1)

To reduce the order of the above BVP, introduce the following notations.

h = W1, h′ = W ′
1 = W2, h′′ = W ′

2 = W3, h′′′ = W ′
3. (2.2)

The system of first order ODEs that results from the conversion of (2.1) is as

follows.

W ′
1 = W2, W1(0) = 0. (2.3)

W ′
2 = W3, W2(0) = 1. (2.4)

W ′
3 = W1W3 + 2W 2

2 −W1W2, W3(0) = s, (2.5)

where s is the missing initial condition which will be guessed.

The RK-4 method will be used to numerically solve the above IVP. Choose the

missing condition s in such a way that.

W2(J, s) = 0. (2.6)

For convenience, now onward W2(J, s) will be denoted by W2(s).

W2(s) = 0. (2.7)

The above equation can be solved by using Newton’s method with the following

iterative formula.

s(n+1) = s(n) − W2(s
(n))(

∂W2(s)
∂s

)(n) , (2.8)

To find
(
∂W2(s)
∂s

)n
, introduce the following notations.

∂W1

∂s
= W4,

∂W2

∂s
= W5,

∂W3

∂s
= W6. (2.9)
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As a result of these new notations the Newton’s iterative scheme, will then get the

form.

sn+1 = sn − W2(s
n)

W5(sn)
. (2.10)

Now differentiating the system of three first order ODEs (2.3)-(2.5) with respect

to s, we get another system of ODEs, as follows.

W ′
4 = W5, W4(0) = 0. (2.11)

W ′
5 = W6, W5(0) = 0. (2.12)

W ′
6 = W4W3 +W1W6 + 4W2W5 −W4W2 −W1W5, W6(0) = 1. (2.13)

Writing all the six ODEs (2.3), (2.4), (2.5), (2.11), (2.12) and (2.13) together, we

have the following initial value problem.

W ′
1 = W2, W1(0) = 0.

W ′
2 = W3, W2(0) = 1.

W ′
3 = W1W3 + 2W 2

2 −W1W2, W3(0) = s.

W ′
4 = W5, W4(0) = 0.

W ′
5 = W6, W5(0) = 0.

W ′
6 = W4W3 +W1W6 + 4W2W5 −W4W2 −W1W5, W6(0) = 1.

The above system together will be solved numerically by RK-4 method. The

stopping criteria for the Newton’s technique is set as,

| W2(s) |< ε,

where ε > 0 is an arbitrarily small positive number.



Chapter 3

MHD Heat and Mass Transfer

Casson Nanofluid Flow past a

Stretching Sheet

3.1 Introduction

In this chapter, consideration has been given to the numerical analysis of MHD

Casson nanofluid flow past a stretching sheet, saturated in a porous medium in the

presence of magnetic field and thermal radiation. The governing nonlinear PDEs

are converted into a system of dimensionless ODEs by utilizing the appropriate

transformations. The numerical solution of ODEs is obtaind by applying shooting

method. At the end of this chapter, the numerical solution for various parameters

is discussed for the dimensionless velocity f ′(ζ), temperature distribution θ(ζ) and

concentration distribution φ(ζ). Investigation of the obtained numerical results are

given through tables and graphs. This chapter provides a detailed review of the

work presented by Kho et al. [49]

16
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3.2 Mathematical Modeling

In this model we consider the 2D MHD flow of a stretched sheet is passed by

the Casson nanofluid with y = 0 has been investigated. The flow is considered

along y-axis with y > 0. It is assumed that the variable stretching velocity, of

the nanofluid flow are Uw(x)=ax. At the stretching surface, the wall temperature

Tw and the nanoparticles concentration Cw have been considered to be constant.

The ambient temperature and ambient concentration are indicated by T∞ and C∞

respecetively.

Figure 3.1: Systematic representation of physical model.
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The flow is described by the following set of equations.

∂u

∂x
+
∂v

∂y
= 0, (3.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

(
1 +

1

β

)
∂2u

∂y2
− ν

k1
u− σB2

0

ρ
u, (3.2)

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂y2

)
+ τ

[
DB

∂C

∂y

∂T

∂y
+
DT

T∞

(
∂T

∂y

)2
]
− 1

(ρCp)

(
∂qr
∂y

)
, (3.3)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+

(
DT

T∞

)
∂2T

∂y2
. (3.4)

The associated BCs have been taken as.

u = Uw(x) = ax, v = 0, T = Tw, C = Cw, at y = 0,

u→ 0, v → 0, T → T∞, C → C∞, as y →∞.

 (3.5)

In the above model, x is the direction around the sheet, the direcetion perpendic-

ular to the sheet is y, u and v are the xy-direction horizontal and vertical velocity

component.

Radiative heat flux and heat generation constants are qr and q. The radiative heat

flux is given by

qr = −4σ∗

3k∗
∂T 4

∂y
,

where the Stefan-Boltzman constant is σ∗ and the absorption coefficient is k∗. If

the temperature difference is very small, the Taylor series can be used to expend

the temperature T 4 around T∞, as follows.

T 4 = T 4
∞ + 4T 3

∞(T − T∞) + 6T 2
∞(T − T∞)2 + ...

The higher order terms are ignored, and we have

T 4 = T 4
∞ + 4T 3

∞(T − T∞)

= T 4
∞ + 4T 3

∞T − 4T 4
∞

= 4T 3
∞T − 3T 4

∞.
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The following similarity transformation are employed by [49] for the conversion of

the mathematical model (3.1)-(3.4) into the system of ODEs.

ψ(x, y) = (aν)
1
2xf(ζ), θ(ζ) =

T − T∞
Tw − T∞

,

ζ =
(a
ν

) 1
2
y, φ(ζ) =

C − C∞
Cw − C∞

,

 (3.6)

where ψ denotes the stream function.

The detailed procedure for the conversion of (3.1)-(3.4) into the dimensionless

form has been discussed below.

u =
∂ψ

∂y
.

∂u

∂x
=

∂

∂x

(
∂ψ

∂y

)
.

∂ψ

∂y
=

∂

∂y

(
(aν)

1
2xf(ζ)

)
= (aν)

1
2xf ′(ζ)

∂ζ

∂y
.

∂ζ

∂y
=
(a
ν

) 1
2

= (aν)
1
2xf ′(ζ)

(a
ν

) 1
2
.

∂ψ

∂y
= axf ′(ζ).

u = axf ′(ζ). (3.7)

∂u

∂x
=

∂

∂x
(axf ′(ζ))

= af ′(ζ)
∂

∂x
(x) .

∂u

∂x
= af ′(ζ). (3.8)

v = −∂ψ
∂x

.

∂v

∂y
= − ∂

∂y

(
∂ψ

∂x

)
.

∂ψ

∂x
=

∂

∂x

(
(aν)

1
2xf(ζ)

)
= (aν)

1
2f(ζ).
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v = −(aν)
1
2f(ζ). (3.9)

∂v

∂y
=

∂

∂y

(
−(aν)

1
2f(ζ)

)
= −(aν)

1
2f ′(ζ)

(a
ν

) 1
2

= −af ′(ζ). (3.10)

Equation (3.1) is satisfied by using (3.8) and (3.10), as follows

∂u

∂x
+
∂v

∂y
= af ′(ζ)− af ′(ζ) = 0. (3.11)

Now, for the momentum equation (3.2), the following derivatives are required.

∂u

∂y
=

∂

∂y
(axf ′(ζ))

= axf ′′(ζ)
∂ζ

∂y

= axf ′′(ζ)
(a
ν

) 1
2
. (3.12)

∂2u

∂y2
= axf ′′′(ζ)

(a
ν

) 1
2 ∂ζ

∂y

= axf ′′′(ζ)
(a
ν

) 1
2
(a
ν

) 1
2

=
a2x

ν
f ′′′(ζ). (3.13)

u
∂u

∂x
= (axf ′(ζ))(af ′(ζ))

= a2xf ′2(ζ). (3.14)

v
∂u

∂y
=
(
−(aν)

1
2f(ζ)

)(
axf ′′(ζ)

(a
ν

) 1
2

)
= −(aν)

1
2f(ζ)axf ′′(ζ)

(a
ν

) 1
2

= −a2xf(ζ)f ′′(ζ). (3.15)

Using (3.14) and (3.15), the left side of (3.2) becomes

u
∂u

∂x
+ v

∂u

∂y
= a2xf ′2(ζ)− a2xf(ζ)f ′′(ζ)

= a2x
(
f ′2(ζ)− f(ζ)f ′′(ζ)

)
. (3.16)
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Using (3.7) and (3.13), the right side of (3.2) becomes,

ν

(
1 +

1

β

)
∂2u

∂y2
− ν

k1
u− σB2

o

ρ
u

= ν

(
1 +

1

β

)(
a2x

ν
f ′′′(ζ)

)
− ν

k1
axf ′(ζ)− σB2

o

ρ
axf ′(ζ),

=

(
1 +

1

β

)(
a2xf ′′′(ζ)

)
− ν

k1
axf ′(ζ)− σB2

o

ρ
axf ′(ζ). (3.17)

Comparing (3.16) and (3.17), the dimensionless form of (3.2) can be written as:

a2x
(
f ′2(ζ)− f(ζ)f ′′(ζ)

)
=

(
1 +

1

β

)(
a2xf ′′′(ζ)

)
− ν

k1
axf ′(ζ)− σB2

o

ρ
axf ′(ζ).

⇒ a2x
(
f ′2(ζ)− f(ζ)f ′′(ζ)

)
= a2x

((
1 + β

β

)
f ′′′(ζ)− ν

k1a
f ′(ζ)− σB2

o

ρa
f ′(ζ)

)
.

⇒ a2x

a2x

(
f ′2(ζ)− f(ζ)f ′′(ζ)

)
=

(
1 + β

β

)
f ′′′(ζ)− ν

k1a
f ′(ζ)− σB2

o

ρa
f ′(ζ).

⇒ f ′2(ζ)− f(ζ)f ′′(ζ) =

(
1 + β

β

)
f ′′′(ζ)− ν

k1a
f ′(ζ)− σB2

o

ρa
f ′(ζ).

⇒

(
1 + β

β

)
f ′′′(ζ)− f ′2(ζ) + f(ζ)f ′′(ζ)−Kf ′(ζ)−Mf ′(ζ) = 0.

⇒

(
1 + β

β

)
f ′′′(ζ) + f(ζ)f ′′(ζ)− f ′2(ζ)− (M +K)f ′(ζ) = 0. (3.18)

Now, for the conversion of energy equation (3.3), the following derivatives are

required.

θ(ζ) =
T − T∞
Tw − T∞

,

T = θ(ζ)(Tw − T∞) + T∞.

∂T

∂x
= 0. (3.19)

∂T

∂y
= (Tw − T∞)θ′(ζ)

∂ζ

∂y

=
(a
ν

) 1
2

(Tw − T∞)θ′(ζ). (3.20)

∂2T

∂y2
=
(a
ν

) 1
2

(Tw − T∞)θ′′(ζ)
∂ζ

∂y
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=
(a
ν

) 1
2

(Tw − T∞)θ′′(ζ)
(a
ν

) 1
2

=
(a
ν

)
(Tw − T∞)θ′′(ζ). (3.21)(

∂T

∂y

)2

=

((a
ν

) 1
2

(Tw − T∞)θ′(ζ)

)2

=
a

ν
(Tw − T∞)2θ′2(ζ). (3.22)

qr = −4σ∗

3k∗
∂T 4

∂y

= −4σ∗

3k∗
∂

∂y
(4T 3

∞T − 3T 4
∞)

= −4σ∗

3k∗
∂

∂y
(4T 3

∞T )

= −16σ∗

3k∗
T 3
∞
∂T

∂y
.

∂qr
∂y

= −16σ∗

3k∗
T 3
∞
∂2T

∂y2

= −16σ∗

3k∗
T 3
∞

((a
ν

)
(Tw − T∞)θ′′(ζ)

)
. (3.23)

∂C

∂y
= (Cw − C∞)φ′(ζ)

∂ζ

∂y
. (3.24)

∂C

∂y
=
(a
ν

) 1
2

(Cw − C∞)φ′(ζ). (3.25)

Using (3.19) and (3.20) in the left hand side of (3.3),

u
∂T

∂x
+ v

∂T

∂y
= axf ′(ζ)(0) +

(
−(aν)

1
2f(ζ)

)((a
ν

) 1
2

(Tw − T∞)θ′(ζ)

)
= −(aν)

1
2f(ζ)

(a
ν

) 1
2

(Tw − T∞)θ′(ζ)

= −a(Tw − T∞)f(ζ)θ′(ζ). (3.26)

Using (3.21)-(3.25) in the right side of (3.3), we get

α
∂2T

∂y2
+ τ

(
DB

∂C

∂y

∂T

∂y
+
DT

T∞

(
∂T

∂y

)2
)
− 1

(ρCp)

∂qr
∂y

= α
(a
ν

)
(Tw − T∞)θ′′(ζ) + τ

[
DB

(a
ν

) 1
2

(Tw − T∞)θ′(ζ)
(a
ν

) 1
2

(Cw − C∞)φ′(ζ)

+
DT

T∞

(a
ν

)
(Tw − T∞)2θ′2(ζ)

]
− 1

ρcp

(
−16σ∗T 3

∞
3k∗

(a
ν

)
(Tw − T∞)θ′′(ζ)

)
= α

(a
ν

)
(Tw − T∞)θ′′(ζ) + τDB

(a
ν

)
(Tw − T∞)θ′(ζ)(Cw − C∞)φ′(ζ)
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+ τ
DT

T∞

(a
ν

)
(Tw − T∞)2θ′2(ζ) +

1

ρcp

(
16σ∗T 3

∞
3k∗

(a
ν

)
(Tw − T∞)θ′′(ζ)

)
. (3.27)

Comparing (3.26) and (3.27), the dimensionless form of (3.3), is obtained as follow.

− a(Tw − T∞)f(ζ)θ′(ζ) = τDB

(a
ν

)
(Tw − T∞)θ′(ζ)(Cw − C∞)φ′(ζ)

+ τ
DT

T∞

(a
ν

)
(Tw − T∞)2θ′2(ζ) +

1

ρcp

(
16σ∗T 3

∞
3k∗

(a
ν

)
(Tw − T∞)θ′′(ζ)

)
+ α

(a
ν

)
(Tw − T∞)θ′′(ζ).

⇒ − af(ζ)θ′(ζ) = α
(a
ν

)
θ′′(ζ) + τDB

(a
ν

)
θ′(ζ)(Cw − C∞)φ′(ζ)

+ τ
DT

T∞

(a
ν

)
(Tw − T∞)θ′2(ζ) +

1

ρcp

(
16σ∗T 3

∞
3k∗

(a
ν

)
θ′′(ζ)

)
⇒ a

ν

(
α +

1

ρcp

16σ∗T 3
∞

3k∗

)
θ′′(ζ) + af(ζ)θ′(ζ) + τDB

(a
ν

)
θ′(ζ)(Cw − C∞)φ′(ζ)

+ τ
DT

T∞

(a
ν

)
(Tw − T∞)θ′2(ζ) = 0

⇒ a

ν

(
k

ρcp
+

16σ∗T 3
∞

3k∗ρcp

)
θ′′(ζ) + af(ζ)θ′(ζ) + τDB

(a
ν

)
θ′(ζ)(Cw − C∞)φ′(ζ)

+ τ
DT

T∞

(a
ν

)
(Tw − T∞)θ′2(ζ) = 0

⇒ a

ν

k

ρcp

(
1 +

16σ∗T 3
∞

3k∗k

)
θ′′(ζ) + af(ζ)θ′(ζ) + τDB

(a
ν

)
θ′(ζ)(Cw − C∞)φ′(ζ)

+ τ
DT

T∞

(a
ν

)
(Tw − T∞)θ′2(ζ) = 0

⇒ α

ν

(
1 +

16σ∗T 3
∞

3k∗k

)
θ′′(ζ) + f(ζ)θ′(ζ) +

τDB(Cw − C∞)

ν
θ′(ζ)φ′(ζ)

+
τ DT (Tw − T∞)

T∞ν
θ′2(ζ) = 0

⇒ 1

Pr

(
1 +

4

3
R

)
θ′′(ζ) + f(ζ)θ′(ζ) +Nbθ′(ζ)φ′(ζ) +Ntθ′2(ζ) = 0

⇒ 1

Pr

(
1 +

4

3
R

)
θ′′(ζ) +Nbθ′(ζ)φ′(ζ) +Ntθ′2(ζ) + f(ζ)θ′(ζ) = 0. (3.28)

Now, we include below the procedure for the conversion of equation (3.4) into the

dimensionless form.

φ(ζ) =
C − C∞
Cw − C∞

,

C = (Cw − C∞)φ(ζ) + C∞.
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∂C

∂x
= 0. (3.29)

∂C

∂y
= (Cw − C∞)φ′(ζ)

∂ζ

∂y

=
(a
ν

) 1
2

(Cw − C∞)φ′(ζ). (3.30)

∂2C

∂y2
=
(a
ν

) 1
2

(Cw − C∞)φ′′(ζ)
∂ζ

∂y

=
(a
ν

) 1
2

(Cw − C∞)φ′′(ζ)
(a
ν

) 1
2

=
(a
ν

)
(Cw − C∞)φ′′(ζ)

=
(a
ν

)
(Cw − C∞)φ′′(ζ). (3.31)

∂2T

∂y2
=
(a
ν

)
(Tw − T∞)θ′′(ζ). (3.32)

Using (3.29) and (3.30) in the left hand side of (3.4), we get:

u
∂C

∂x
+ v

∂C

∂y
= axf ′(ζ)(0) +

(
−(aν)

1
2f(ζ)

)((a
ν

) 1
2

(Cw − C∞)φ′(ζ)

)
= −(aν)

1
2f(ζ)

(a
ν

) 1
2

(Cw − C∞)φ′(ζ)

= −a(Cw − C∞)f(ζ)φ′(ζ). (3.33)

Using (3.31) and (3.32) in the right hand side of (3.4), the following is acheived:

DB
∂2C

∂y2
+
DT

T∞

∂2T

∂y2
= DB

(a
ν

)
(Cw − C∞)φ′′(ζ) +

DT

T∞

(a
ν

)
(Tw − T∞)θ′′(ζ).

(3.34)

Comparing (3.33) and (3.34),

− a(Cw − C∞)f(ζ)φ′(ζ) = DB

(a
ν

)
(Cw − C∞)φ′′ +

DT

T∞

(a
ν

)
(Tw − T∞)θ′′(ζ).

⇒ − ν

DB

f(ζ)φ′(ζ) = φ′′(ζ) +
DT (Tw − T∞)

T∞DB(Cw − C∞)
θ′′(ζ).

⇒ − Scf(ζ)φ′(ζ) = φ′′(ζ) +
τνDT (Tw − T∞)

τνT∞DB(Cw − C∞)
θ′′(ζ).

⇒ φ′′(ζ) + Scf(ζ)φ′(ζ) +
DT τ(Tw − T∞)ν

T∞νDBτ(Cw − C∞)
θ′′(ζ) = 0.

⇒ φ′′(ζ) + Scf(ζ)φ′(ζ) +
Nt

Nb
θ′′(ζ) = 0. (3.35)
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The corresponding BCs are transformed into the non-dimensional form through

the following procedure.

u = Uw(x) = ax, at y = 0.

⇒ u = axf ′(ζ), at ζ = 0.

⇒ axf ′(ζ) = ax, at ζ = 0.

⇒ f ′(ζ) = 1, at ζ = 0.

⇒ f ′(0) = 1.

v = 0, at y = 0.

⇒ − (aν)
1
2f(0) = 0, at ζ = 0.

⇒ f(0) = 0.

T = Tw, at y = 0.

⇒ θ(ζ)(Tw − T∞) + T∞ = Tw, at ζ = 0.

⇒ θ(ζ)(Tw − T∞) = (Tw − T∞), at ζ = 0.

⇒ θ(ζ) = 1, at ζ = 0.

⇒ θ(0) = 1.

C = Cw, at y = 0.

⇒ φ(ζ)(Cw − C∞) + C∞ = Cw, at ζ = 0.

⇒ φ(ζ)(Cw − C∞) = (Cw − C∞), at ζ = 0.

⇒ φ(ζ) = 1, at ζ = 0.

⇒ φ(0) = 1.

u→ (0), as y →∞.

⇒ af ′(ζ)x→ (0), as y →∞.

⇒ axf ′(ζ)→ (0),

⇒ f ′(ζ)→ (0), as ζ →∞.

⇒ f ′(∞)→ 0.

T → T∞, as y →∞.

⇒ θ(ζ)(Tw − T∞) + T∞ → T∞,

⇒ θ(ζ)(Tw − T∞)→ 0, as ζ →∞.
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⇒ θ(ζ)→ 0, as ζ →∞.

⇒ θ(∞)→ 0.

C → C∞, as y →∞.

⇒ φ(ζ)(Cw − C∞) + C∞ → C∞,

⇒ φ(ζ)(Cw − C∞)→ 0,

⇒ φ(ζ)→ 0, as ζ →∞.

⇒ φ(∞)→ 0.

The final dimensionless form of the governing model, is(
1 + β

β

)
f ′′′(ζ) + f(ζ)f ′′(ζ)− f ′2(ζ)− (M +K)f ′(ζ) = 0, (3.36)

1

Pr

(
1 +

4

3
R

)
θ′′(ζ) +Nbθ′(ζ)φ′(ζ) +Ntθ′2(ζ) + f(ζ)θ′(ζ) = 0, (3.37)

φ′′(ζ) + Scf(ζ)φ′(ζ) +
Nt

Nb
θ′′(ζ) = 0. (3.38)

The associated BCs (3.5) in the dimensionless form are:

f(0) = 0, f ′(0) = 1, θ(0) = 1, φ(0) = 1,

f ′(∞)→ 0, θ(∞)→ 0 and φ(∞)→ 0.

 (3.39)

Different dimensionless parameters used in equations (3.36)-(3.38) are formulated

as follows.

M =
σB2

0

ρa
, R =

4σ∗T 3
∞

kk∗
, Nb =

τDB(Cw − C∞)

ν
,

Pr =
ν

α
, Sc =

ν

DB

, K =
ν

k1a
, Nt =

τDT (Tw − T∞)

T∞ν
.

The skin friction coefficient, is defined as:

Cf =
τw|y=0

ρU2
w

. (3.40)

To achieve the dimensionless form of skin friction coefficient Cf the following steps

will be helpful.
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Since

τw = µ

(
∂u

∂y

)
y=0

, (3.41)

Cf =
1

ρU2
w

µ

(
∂u

∂y

)
y=0

=
1

ρa2x2
µ

(
axf ′′(ζ)

(a
ν

) 1
2

)
=

ρν

ρa2x2

(
axf ′′(ζ)

(a
ν

) 1
2
)

=
νa

3
2x

a2x2ν
1
2

f ′′(ζ)

=
ν

2
2

ax
2
2

f ′′(ζ)

= Re
−1
2
x f ′′(ζ)

=
1

Re
1
2
x

f ′′(ζ).

⇒ Re
1
2
xCf = f ′′(ζ), (3.42)

where Re stands for the Reynolds number, which is defined as Re = xux(x)
νf

.

The local Nusselt number is formulated as:

Nux =
xqw

k(Tw − T∞)
. (3.43)

To achieve the dimensionless form of local Nusselt number Nux, the following

steps will be helpful.

Since

qw = −k
(
∂T

∂y

)
y=0

, (3.44)

Nux =
−xk

k(Tw − T∞)

(
∂T

∂y

)
y=0

,

=
−x

(Tw − T∞)

((a
ν

) 1
2

(Tw − T∞)θ′(ζ)

)
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= −xa
1
2

ν
1
2

θ′(ζ)

= −Re
1
2
x θ
′(ζ).

⇒ Nux

Re
1
2
x

= −θ′(ζ). (3.45)

The local Sherwood number is defined as:

Shx =
xqm

DB(Cw − C∞)
. (3.46)

To the dimensionless form of Shx, the following steps will be helpful.

Since

qm = −DB

(
∂C

∂y

)
y=0

, (3.47)

Shx = − xDB

DB(Cw − C∞)

(
∂C

∂y

)
y=0

= − x

(Cw − C∞)

(
a

ν

) 1
2

(Cw − C∞)φ′(ζ)

= − x

(Cw − C∞)

((a
ν

) 1
2

(Cw − C∞)φ′(ζ)

)

= −x
(a
ν

) 1
2
φ′(ζ)

= −xa
1
2

ν
1
2

φ′(ζ)

= −Re
1
2
xφ
′(ζ)

⇒ Shx

Re
−1
2
x

= −φ′(ζ). (3.48)

3.3 Numerical Method for Solution

The shooting method has been used to solve the system of ordinary differential

equations (3.36)-(3.38). The following notations have been considered.

f = Z1, f ′ = Z ′1 = Z2, f ′′ = Z ′′1 = Z ′2 = Z3, f ′′′ = Z ′3.
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The following system of first order ODEs is created by converting the momentum

equation.

Z ′1 = Z2, Z1(0) = 0.

Z ′2 = Z3, Z2(0) = 1.

Z ′3 =

(
β

1 + β

)(
−Z1Z3 + Z2

2 + (M +K)Z2

)
, Z3(0) = p.

The RK-4 method will be used to numerically solve the above mentioned initial

value problem. The bounded domain [0, ζ∞] has been used in place of the un-

bounded domain [0 , ∞) for the numerical results with the observation that it

produces an asymptotic covergence of the solution. The missing condition p is

selected so that the subsequent relation is met.

Z2(ζ∞, p) = 0.

Newton’s method will be used to find p. This method has the following iterative

scheme.

p(n+1) = p(n) − Z2(ζ∞, p
(n))(

∂
∂p

(Z2(ζ∞, p))
)(n) .

We further introduce the following notations:

∂Z1

∂p
= Z4,

∂Z2

∂p
= Z5,

∂Z3

∂p
= Z6.

As a result of these new notations, the Newton’s iterative scheme gets the form:

p(n+1) = p(n) − Z2(ζ∞, p
(n))

Z5(ζ∞, p(n))
.

Now differentiating the system of three first order ODEs with respect to p, we get

another system of ODEs, as follows.

Z ′4 = Z5, Z4(0) = 0.
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Z ′5 = Z6, Z5(0) = 0.

Z ′6 =

(
β

1 + β

)
(−Z4Z3 − Z1Z6 + 2Z2Z5 + (M +K)Z5) , Z6(0) = 1.

The stopping criteria for the Newton’s technique is set as.

| Z2(ζ∞, p) |< ε,

where ε > 0 is an arbitrarily small positive number. From now onward ε has been

taken as 10−10.

Now, to solve equations (3.37) and (3.38) numerically by using shooting method,

assume f as a known function. The notations below are used for the implementa-

tion of the shooting method.

θ = Y1, θ′ = Y2, θ′′ = Y ′2 , φ = Y3, φ′ = Y4, φ′′ = Y ′4 , A1 =

(
1 +

4

3
R

)
.

The system of equations (3.37) and (3.38), can be written in the form of the

following first order coupled ODEs.

Y ′1 = Y2, Y1(0) = 1.

Y ′2 = −Pr
A1

[
NbY2Y4 +NtY 2

2 + fY2

]
, Y2(0) = l.

Y ′3 = Y4, Y3(0) = 1.

Y ′4 = −ScfY4 +
Nt

Nb

[
Pr

A1

[
NbY2Y4 +NtY 2

2 + fY2

]]
, Y4(0) = m.

The RK-4 technique will be used to numerically solve the initial value problem

mentioned above. The missing conditions l and m in the above system of equations

must be selected in such a way.

Y1(ζ∞, l,m) = 0, Y3(ζ∞, l,m) = 0.
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To solve the above algebaric equations, we apply the Newton’s method which has

the following scheme.

 l
m

(n+1)

=

 l
m

(n)

−

∂Y1∂l ∂Y1
∂m

∂Y3
∂l

∂Y3
∂m

−1 Y1
Y3

(n)

Now, introduce the following notations,

∂Y1
∂l

= Y5,
∂Y2
∂l

= Y6,
∂Y3
∂l

= Y7,
∂Y4
∂l

= Y8.

∂Y1
∂m

= Y9,
∂Y2
∂m

= Y10,
∂Y3
∂m

= Y11,
∂Y4
∂m

= Y12.

As the result of these new notations, the Newton’s iterative scheme gets the form.

 l
m

(n+1)

=

 l
m

(n)

−

Y5 Y9

Y7 Y11

−1 Y1
Y3

(n)

Now differentiating the system of four first order ODEs with respect to l, and m

we get another system of ODEs, as follows.

Y ′5 = Y6, Y5(0) = 0.

Y ′6 = −Pr
A1

[
Nb(Y6Y4 + Y2Y8) + 2NtY2Y6 + fY6

]
Y6(0) = 1.

Y ′7 = Y8, Y7(0) = 0.

Y ′8 = −ScfY8 +
Nt

Nb

[
Pr

A1

[
Nb(Y6Y4 + Y2Y8) + 2NtY2Y6 + fY6

]]
, Y8(0) = 0.

Y ′9 = Y10, Y9(0) = 0.

Y ′10 = −Pr
A1

[
Nb(Y10Y4 + Y2Y12) + 2NtY2Y10 + fY10

]
, Y10(0) = 0.

Y ′11 = Y12, Y11(0) = 0.

Y ′12 = −ScfY12 +
Nt

Nb

[
Pr

A1

[
Nb(Y10Y4 + Y2Y12) + 2NtY2Y10 + fY10

]]
, Y12(0) = 1.
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The stopping criteria for the Newton’s method is set as.

max{|Y1(ζ∞, l,m)|, |Y3(ζ∞, l,m)|} < ε.

3.4 Representation of Graphs and Tables

A thorough discussion on the graphs and tables has been conducted which contains

the impact of dimensionless parameters on the skin friction coefficient (Rex)
1
2Cf ,

local Nusselt number (Rex)
− 1

2Nux and local Sherwood number (Rex)
− 1

2Shx. Ta-

ble 3.1 explains the impact of magnetic parameter M and Casson fluid parameter

β on (Rex)
1
2Cf . For the rising values of M , the skin fraction coefficient (Rex)

1
2Cf

increases. Table 3.1 shows the interval If where from the missing condition can

be chosen. It is remarkable that the interval mentioned offers a considerable flex-

ibility for the choice of the initial guess.

In Table 3.2, the effect of significant parameters on local Nusselt number (Rex)
− 1

2Nux

and local Sherwood number (Rex)
− 1

2Shx has been discussed. The rising pattern

is found in (Rex)
− 1

2Shx and decreasing behavior noticed in (Rex)
− 1

2Nux due to

increasing values of R. Table 3.2 the missing initial conditions θ(ζ) and φ(ζ) can

be chosen from [Ig, Ih]. It is remarkable that the interval mentioned offers a con-

siderable flexibility for the choice of the initial guess.

Figures 3.2 and 3.3 show the impact of Casson fluid parameter β on the veloc-

ity profile f ′(ζ) and temperature profile θ(ζ). By increasing the value of β, the

velocity of the fluid decreases and the temperature increases. When Casson fluid

parameter β is incresed, the yield stress is decreased and Casson acts like New-

tonain fluid. Furthermore, it is inferred that the velocity of Casson fluid exceeds

that of the Newtonian fluid.

Figure 3.4 displays the impact of M on the velocity distribution. By rising the val-

ues of M , the velocity distribution shows a decreasing behavior due to the presence

of the Lorentz force. Figure 3.5 describes the impact of M on the temperature

distribution. The temperature distribution expands by rising the values of the M .

Figures 3.6 and 3.7 indicate the impact of Nb on the dimensionless temperature
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θ(ζ) and concentration distribution φ(ζ). The behavior of temperature distribu-

tion is increased and concentration profile is decreased due to the accelerating

values of Nb. Figures 3.8 and 3.9 illustrate the impact of Nt on θ(ζ) and φ(ζ). By

taking bigger values of Nt into account, both the temperature and concentration

distributions increase. Furthermore, a growth in the related thermal and concen-

tration boundary layer has been observed. Figure 3.10 represents the impact of

thermal radiation R on the temperature profile θ(ζ). In this graph, it is observed

that on the rising values of R, the temperature profile θ(ζ) also increases. So,

the rate of heat transfer decreases with an increase in the thermal radiation R,

because of which the temperature profile θ(ζ) increases.

The effect of magnetic parameter and the Casson nanofluid on the local Nusselt

number and skin friction coefficient, respectively, is illustrated in Figures 3.11 and

3.12. Temperature gradients will be higher when the Casson parameter’s value is

bigger. However, if the magnetic force increases, the thickness of the boundary

layer will also decrease. Figure 3.12 illustrates how the skin friction coefficient

reduces when the Casson parameter the and magnetic parameter values increase.

Figure 3.13 illustrates the effect of Nt and Nb on the local Nusselt number. As the

values of Nb and Nt are increased, it is clear that the dimensionless temperature

rate drops continuously. Figure 3.14 indicates the impact of Prandlt number and

radiation parameter on the temperature gradient. The local Nusselt number rises

along with an increase in the values of Pr. As the radiation parameter rises, the

heat transfer rate declines.

Table 3.1: Results of (Rex)
1
2Cf for various parameters

M β K (Rex)
1
2Cf If

0.1 0.5 0.3 -0.6831 [-0.7, 0.6]

0.2 -0.7071 [-0.7, 0.1]

0.5 -0.7746 [-0.7, 0.2]

1.0 0.3 -0.9486 [-0.9, -0.4]

1.5 -1.0392 [-1.1, -0.6]

2.0 -1.0954 [-1.1, -0.8]
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Table 3.2: Results of −(Rex)−
1
2Nux and −(Rex)−

1
2Shx with some fixed pa-

rameters Pr = 7.0, K = 0.3, Sc = 0.1.

M R β Nb Nt −(Rex)
− 1

2Nux −(Rex)
− 1

2Shx Ig Ih

0.2 0.25 0.5 0.1 0.1 1.564456 -1.236102 [-2.0, 2.0] [-2.0, 3.0]

0.3 1.560033 -1.233961 [-2.0, 1.0] [-2.0, 4.0]

0.5 1.551488 -1.229542 [-2.5, 2.0] [-2.0, 1.5]

0.2 1.0 1.165690 -0.844370 [-2.0, 2.5] [-2.0, 1.0]

2.0 0.908916 -0.593840 [-2.0, 2.0] [-2.0, 3.0]

4.0 0.661957 -0.354479 [-2.0, 3.0] [-2.0, 1.0]

1.5 1.516893 -1.208542 [-2.0, 2.5] [-2.0, 1.0]

2.0 1.506442 -1.201414 [-3.0, 2.0] [-2.0, 2.0]

0.5 0.2 1.502551 -0.499103 [-2.0, 3.5] [-1.5, 3.0]

0.4 1.389757 -0.131341 [-2.0, 6.0] [-1.0, 5.0]

0.1 0.2 1.512651 -2.548789 [-2.0, 3.0] [-3.0, 3.0]

0.3 1.461821 -3.761786 [-3.0, 3.0] [-3.0, 3.0]

0.4 1.411979 -4.878093 [-2.5, 2.5] [-2.0, 1.5]
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Figure 3.2: Velocity profile f ′(ζ) due to change in β.
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Figure 3.3: Temperature profile θ(ζ) due to change in β.
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Figure 3.4: Velocity profile f ′(ζ) due to change in M .
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Figure 3.5: Temperature profile θ(ζ) due to change in M .
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Figure 3.6: Temperature profile θ(ζ) due to change in Nb.
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Figure 3.7: Concentration profile φ(ζ) due to change in Nb.
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Figure 3.8: Temperature profile θ(ζ) due to change in Nt.
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Figure 3.9: Concentration profile φ(ζ) due to change in Nt.
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Figure 3.10: Temperature profile θ(ζ) due to change in R.
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Figure 3.11: Impact of β and M on the temperature gradient.
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Figure 3.12: Impact of β and M on the skin friction coefficient.



MHD Casson Nanofluid 40

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Nt

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-
(0

)

Nb=0.75

Nb=1.25

Nb=2.00

Nb=2.50

R=5.0, Pr=7.0, Sc=2.0,

   M= =0.2, K=0.25

Figure 3.13: Impact of Nb and Nt on the temperature gradient.
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Figure 3.14: Impact of Pr and R on the temperature gradient.



Chapter 4

MHD Casson Nanofluid Flow

with Cattaneo-Christov Heat

Flux and Mass Transfer over a

Stretching Sheet

4.1 Introduction

This chapter contains an extension of the model [49] discussed in Chapter 3 by con-

sidering Cattaneo-Christov heat flux in the temperature equation. Furthermore,

chemical reaction, is also included in the concentration equation. The governing

nonlinear PDEs are converted into a system of dimensionless ODEs by utilizing

the appropriate transformations. The numerical solution of ODEs is obtaind by

applying numerical method known as shooting method. At the end of this chapter,

the final results are discussed for significant parameters affecting velocity proflie

f ′(ζ), temperature profile θ(ζ) and concentration profile φ(ζ) which are shown in

tables and graphs.

41
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4.2 Mathematical Modeling

It is aimed to analyse the 2D MHD flow of non-Newtonian Casson nanofluid

past a stretching sheet and porous medium. The flow occupied the space y > 0.

Furthermore, the flow direction is considered as the x-axis, and the y-axis is normal

to it. A Cattaneo-Christov heat flux and thermal radiation are both present during

the investigation of energy transport. Moreover, the concentration equation is

discussed with the help chemical reaction.

The set of equations describing the flow are as follows.

∂u

∂x
+
∂v

∂y
= 0, (4.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

(
1 +

1

β

)
∂2u

∂y2
− ν

k1
u− σB2

0

ρ
u, (4.2)

u
∂T

∂x
+ v

∂T

∂y
+ λA

[
u
∂u

∂x

∂T

∂x
+ v

∂v

∂y

∂T

∂y
+ u

∂v

∂x

∂T

∂y
+ v

∂u

∂y

∂T

∂x
+ 2uv

∂2T

∂x∂y

+ u2
∂2T

∂x2
+ v2

∂2T

∂y2

]
= α

(
∂2T

∂y2

)
+ τ

(
DB

∂C

∂y

∂T

∂x
+
DT

T∞

(
∂T

∂y

)2
)

− 1

(ρCp)

(
∂qr
∂y

)
, (4.3)

u
∂C

∂x
+ v

∂C

∂y
= DB

∂2C

∂y2
+

(
DT

T∞

)
∂2T

∂y2
−KR(C − C∞). (4.4)

The associated BCs have been taken as.

u = Uw(x) = ax, v = 0, T = Tw, C = Cw, at y = 0,

u→ 0, v → 0, T → T∞, C → C∞, as y →∞.

 (4.5)

Following similarity transformation has been used to convert PDEs (4.1)-(4.4) into

a system of ODEs.

ζ =
(a
ν

) 1
2
y, u = axf ′(ζ), v = −(aν)

1
2f(ζ),

θ(ζ) =
T − T∞
Tw − T∞

, φ(ζ) =
C − C∞
Cw − C∞

,

 (4.6)
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where ζ denotes the similarity variable whereas f , θ, and φ are the dimensionless

velocity, temperature and concentration respectively.

The detailed procedure for the identical satisfaction of (4.1) has been discussed in

Chapter 3. The complete procedure for the conversion of (4.2) is also discussed in

Chapter 3.

Now, we include below the procedure for the conversion of equation (4.3) into the

dimensionless form.

(T − T∞) = (Tw − T∞)θ(ζ)

T = (Tw − T∞)θ(ζ) + T∞. (4.7)

∂T

∂x
= 0. (4.8)

∂2T

∂x∂y
= 0. (4.9)

∂2T

∂x2
= 0. (4.10)

∂u

∂y
= axf ′′(ζ)

∂ζ

∂y

= axf ′′(ζ)
(a
ν

) 1
2

=
a

3
2

ν
1
2

xf ′′(ζ). (4.11)

u
∂u

∂x

∂T

∂x
= axf ′(ζ)(axf ′′(ζ))(0)

u
∂u

∂x

∂T

∂x
= 0. (4.12)

v
∂v

∂y

∂T

∂y
= (−af ′(ζ))

(
−(aν)

1
2f(ζ)

)((a
ν

) 1
2

(Tw − T∞)θ′(ζ)

)
= a2(Tw − T∞)f(ζ)f ′(ζ)θ′(ζ). (4.13)

u
∂v

∂x

∂T

∂y
= axf ′(ζ)(0)

((a
ν

) 1
2

(Tw − T∞)θ′(ζ)

)
u
∂v

∂x

∂T

∂y
= 0. (4.14)

v
∂u

∂y

∂T

∂x
=
(
−(aν)

1
2f(ζ)

)(a 3
2

ν
1
2

xf ′′(ζ)

)
(0)

v
∂u

∂y

∂T

∂x
= 0. (4.15)

2uv
∂2T

∂x∂y
= 2(axf ′(ζ))

(
−(aν)

1
2f(ζ)

)
(0)
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2uv
∂2T

∂x∂y
= 0. (4.16)

u2
∂2T

∂x2
= 0. (4.17)

v2
∂2T

∂y2
=
(
−(aν)

1
2f(ζ)

)2 ((a
ν

)
(Tw − T∞)θ′′(ζ)

)
= a2(Tw − T∞)f 2(ζ)θ′′(ζ). (4.18)

Adding equations (4.12)-(4.18), we get.

u
∂u

∂x

∂T

∂x
+ v

∂v

∂y

∂T

∂y
+ u

∂v

∂x

∂T

∂y
+ v

∂u

∂y

∂T

∂x
+ 2uv

∂2T

∂x∂y
+ u2

∂2T

∂x2
+ v2

∂2T

∂y2

= 0 + a2(Tw − T∞)f(ζ)f ′(ζ)θ′(ζ) + 0 + 0 + 0 + 0 + a2(Tw − T∞)f 2(ζ)θ′′(ζ)

= a2(Tw − T∞)f(ζ)f ′(ζ)θ′(ζ) + a2(Tw − T∞)f 2(ζ)θ′′(ζ)

= a2(Tw − T∞)
[
f(ζ)f ′(ζ)θ′(ζ) + f 2(ζ)θ′′(ζ)

]
. (4.19)

Left hand side of (4.3)

u
∂T

∂x
+ v

∂T

∂y
+ λA

[
u
∂u

∂x

∂T

∂x
+ v

∂v

∂y

∂T

∂y
+ u

∂v

∂x

∂T

∂y
+ v

∂u

∂y

∂T

∂x
+ 2uv

∂2T

∂x∂y

+ u2
∂2T

∂x2
+ v2

∂2T

∂y2

]
= −a(Tw − T∞)f(ζ)θ′(ζ)

+ λAa
2(Tw − T∞)

[
f(ζ)f ′(ζ)θ′(ζ) + f 2(ζ)θ′′(ζ)

]
. (4.20)

Right side of (4.3), we get

α
∂2T

∂y2
+ τ

(
DB

∂C

∂y

∂T

∂y
+
DT

T∞

(
∂T

∂y

)2
)
− 1

(ρCp)

∂qr
∂y

= α
(a
ν

)
(Tw − T∞)θ′′(ζ) + τDB

(a
ν

)
(Tw − T∞)θ′(ζ)(Cw − C∞)φ′(ζ)

+ τ
DT

T∞

(a
ν

)
(Tw − T∞)2θ′2(ζ) +

1

ρcp

(
16σ∗T 3

∞
3k∗

(a
ν

)
(Tw − T∞)θ′′(ζ)

)
. (4.21)

Comparing (4.20) and (4.21)

− a(Tw − T∞)f(ζ)θ′(ζ) + λAa
2(Tw − T∞)

[
f(ζ)f ′(ζ)θ′(ζ) + f 2(ζ)θ′′(ζ)

]
= τDB

(a
ν

)
(Tw − T∞)θ′(ζ)(Cw − C∞)φ′(ζ) + τ

DT

T∞

(a
ν

)
(Tw − T∞)2θ′2(ζ)
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+ α
(a
ν

)
(Tw − T∞)θ′′(ζ) +

1

ρcp

(
16σ∗T 3

∞
3k∗

(a
ν

)
(Tw − T∞)θ′′(ζ)

)
.

⇒ − af(ζ)θ′(ζ) + λAa
2
[
f(ζ)f ′(ζ)θ′(ζ) + f 2(ζ)θ′′(ζ)

]
= τ

DT

T∞

(a
ν

)
(Tw − T∞)θ′2(ζ) + τDB

(a
ν

)
θ′(ζ)(Cw − C∞)φ′(ζ)

+
a

ν

(
α +

1

ρcp

(
16σ∗T 3

∞
3k∗

))
θ′′(ζ).

⇒ − f(ζ)θ′(ζ) + λAa
[
f(ζ)f ′(ζ)θ′(ζ) + f 2(ζ)θ′′(ζ)

]
= τ

DT

T∞

(
1

ν

)
(Tw − T∞)θ′2(ζ) + τDB

(
1

ν

)
θ′(ζ)(Cw − C∞)φ′(ζ)

+
1

ν

(
α +

1

ρcp

(
16σ∗T 3

∞
3k∗

))
θ′′(ζ).

⇒ 1

ν

(
k

ρcp
+

1

ρcp

(
16σ∗T 3

∞
3k∗

))
θ′′(ζ)− λAa

[
f(ζ)f ′(ζ)θ′(ζ) + f 2(ζ)θ′′(ζ)

]
+ f(ζ)θ′(ζ) +

τDB(Cw − C∞)

ν
θ′(ζ)φ′(ζ) +

τDT (Tw − T∞)

T∞ν
θ′2(ζ) = 0

⇒ k

νρcp

(
1 +

16σ∗T 3
∞

3k∗k

)
θ′′(ζ)− γ1

[
f(ζ)f ′(ζ)θ′(ζ) + f 2(ζ)θ′′(ζ)

]
+ f(ζ)θ′(ζ) +Nbθ′(ζ)φ′(ζ) +Ntθ′2(ζ) = 0.

⇒ α

ν

(
1 +

4

3
R

)
θ′′(ζ)− γ1

[
f(ζ)f ′(ζ)θ′(ζ) + f 2(ζ)θ′′(ζ)

]
+ f(ζ)θ′(ζ)

+Nbθ′(ζ)φ′(ζ) +Ntθ′2(ζ) = 0.

⇒ 1

Pr

(
1 +

4

3
R

)
θ′′(ζ)− γ1

(
f(ζ)f ′(ζ)θ′(ζ) + f 2(ζ)θ′′(ζ)

)
+ f(ζ)θ′(ζ)

+Nbθ′(ζ)φ′(ζ) +Ntθ′2(ζ) = 0. (4.22)

Now, we include below the procedure for the conversion of equation (4.3) into the

dimensionless form.

φ(ζ) =
C − C∞
Cw − C∞

.

(Cw − C∞) = (C − C∞)φ(ζ)

C = (Cw − C∞)φ(ζ) + C∞. (4.23)

∂2C

∂y2
=
(a
ν

) 1
2

(Cw − C∞)φ′′(ζ)
∂ζ

∂y

=
(a
ν

)
(Cw − C∞)φ′′(ζ). (4.24)
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Left hand side of (4.4), we get

u
∂C

∂x
+ v

∂C

∂y
= −a(Cw − C∞)f(ζ)φ′(ζ). (4.25)

Right hand side of (4.4)

DB
∂2C

∂y2
+
DT

T∞

∂2T

∂y2
−KR(Cw − C∞) = DB

(a
ν

)
(Cw − C∞)φ′′(ζ)

+
DT

T∞

(a
ν

)
(Tw − T∞)θ′′(ζ)−KR(C − C∞)φ(ζ). (4.26)

Comparing (4.25) and (4.26),

− a(Cw − C∞)f(ζ)φ′(ζ) = DB

(a
ν

)
(Cw − C∞)φ′′(ζ)

+
DT

T∞

(a
ν

)
(Tw − T∞)θ′′(ζ)−KR(C − C∞)φ(ζ).

⇒ − af(ζ)φ′(ζ) = DB

(
a

ν

)
φ′′(ζ) +

DT

T∞

(a
ν

) (Tw − T∞)

(Cw − C∞)
θ′′(ζ)−KRφ(ζ).

⇒ − f(ζ)φ′(ζ) = DB

(
1

ν

)
φ′′(ζ) +

DT

T∞

(
1

ν

)
(Tw − T∞)

(Cw − C∞)
θ′′(ζ)− KR

a
φ(ζ).

⇒ − ν

DB

f(ζ)φ′(ζ) = φ′′(ζ) +
DT

T∞

(Tw − T∞)

DB(Cw − C∞)
θ′′(ζ)− ν

DB

KR

a
φ(ζ).

⇒ − Scf(ζ)φ′(ζ) = φ′′(ζ) +
DT

T∞

τν(Tw − T∞)

τνDB(Cw − C∞)
θ′′(ζ)− Scγ2φ(ζ).

⇒ − Scf(ζ)φ′(ζ) = φ′′(ζ) +
Nt

Nb
θ′′(ζ)− Scγ2φ(ζ).

⇒ φ′′(ζ) + Scf(ζ)φ′(ζ) +
Nt

Nb
θ′′(ζ)− Scγ2φ(ζ) = 0. (4.27)

The corresponding bc’s are coverted into the non-dimensional form through the

following procedure.

u = Uw(x) = ax, at y = 0.

⇒ u = axf ′(ζ), at ζ = 0.

⇒ axf ′(ζ) = ax, at ζ = 0.

⇒ f ′(ζ) = 1, at ζ = 0.

⇒ f ′(0) = 1.
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v = 0, at y = 0.

⇒ − (aν)
1
2f(0) = 0, at ζ = 0.

⇒ f(0) = 0.

T = Tw, at y = 0.

⇒ θ(ζ)(Tw − T∞) + T∞ = Tw, at ζ = 0.

⇒ θ(ζ)(Tw − T∞) = (Tw − T∞), at ζ = 0.

⇒ θ(ζ) = 1, at ζ = 0.

⇒ θ(0) = 1.

C = Cw, at y = 0.

⇒ φ(ζ)(Cw − C∞) + C∞ = Cw, at ζ = 0.

⇒ φ(ζ)(Cw − C∞) = (Cw − C∞), at ζ = 0.

⇒ φ(ζ) = 1, at ζ = 0.

⇒ φ(0) = 1.

u→ (0), as y →∞.

⇒ af ′(ζ)x→ (0), as y →∞.

⇒ axf ′(ζ)→ (0),

⇒ f ′(ζ)→ (0), as ζ →∞.

⇒ f ′(∞)→ 0.

T → T∞, as y →∞.

⇒ θ(ζ)(Tw − T∞) + T∞ → T∞,

⇒ θ(ζ)(Tw − T∞)→ 0, as ζ →∞.

⇒ θ(ζ)→ 0, as ζ →∞.

⇒ θ(∞)→ 0.

C → C∞, as y →∞.

⇒ φ(ζ)(Cw − C∞) + C∞ → C∞,

⇒ φ(ζ)(Cw − C∞)→ 0,

⇒ φ(ζ)→ 0, as ζ →∞.

⇒ φ(∞)→ 0.
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The final dimensionless form of the governing model, is(
1 + β

β

)
f ′′′(ζ) + f(ζ)f ′′(ζ)− f ′2(ζ)− (M +K)f ′(ζ) = 0, (4.28)

1

Pr

(
1 +

4

3
R

)
θ′′(ζ)− γ1

(
f(ζ)f ′(ζ)θ′(ζ) + f 2(ζ)θ′′(ζ)

)
+ f(ζ)θ′(ζ)

+Nbθ′(ζ)φ′(ζ) +Ntθ′2(ζ) = 0, (4.29)

φ′′(ζ) + Scf(ζ)φ′(ζ) +
Nt

Nb
θ′′(ζ)− Scγ2φ(ζ) = 0. (4.30)

The associated BCs (4.5) in the dimensionless form are:

f(0) = 0, f ′(0) = 1, θ(0) = 1, φ(0) = 1.

f ′(∞)→ 0, θ(∞)→ 0, φ(∞)→ 0.

 (4.31)

Different parameters used in equations (4.28)-(4.30) are formulated as follows.

M =
σB2

0

ρa
, R =

4σ∗T 3
∞

kk∗
, Nb =

τDB(Cw − C∞)

ν
, γ1 = λAa,

Pr =
ν

α
, Sc =

ν

DB

, K =
ν

k1a
, Nt =

τDT (Tw − T∞)

T∞ν
, γ2 =

KR

a
.

4.3 Solution Methodology

In order to solve the system of ODEs (4.28) the shooting method has been used.

The following notations have been cosidered.

f = Y1, f ′ = Y ′1 = Y2, f ′′ = Y ′′1 = Y ′2 = Y3, f ′′′ = Y ′3 .

The following system of first order ODEs is created by converting the momentum

equation.

Y ′1 = Y2, Y1(0) = 0.

Y ′2 = Y3, Y2(0) = 1.

Y ′3 =
( β

1 + β

) (
−Y1Y3 + Y 2

2 + (M +K)Y2
)
, Y3(0) = s.
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The above IVP will be numerically solved by RK-4. The bounded domain [0, ζ∞]

has been used in place of the unbounded domain [0 , ∞) for the numerical results

with the observation that it produces an asymptotic covergence of the solution.

The missing condition s is to be chosen such that.

Y2(ζ∞, s) = 0.

Newton’s method will be used to find s. This method has the following iterative

scheme.

s(n+1) = s(n) − Y2(ζ∞, s
(n))(

∂
∂p

(Y2(ζ∞, s))
)(n) .

We further introduce the following notations:

∂Y1
∂s

= Y4,
∂Y2
∂s

= Y5,
∂Y3
∂s

= Y6.

As a result of these new notations, the Newton’s iterative scheme gets the form:

s(n+1) = s(n) − Y2(ζ∞, s
(n))

Y5(ζ∞, s(n))
.

Now differentiating the system of three first order ODEs with respect to s, we get

another system of ODEs, as follows.

Y ′4 = Y5, Y4(0) = 0.

Y ′5 = Y6, Y5(0) = 0.

Y ′6 =
( β

1 + β

)
(−Y4Y3 − Y1Y6 + 2Y2Y5 + (M +K)Y5) , Y6(0) = 1.

The stopping criteria for the Newton’s technique is set as.

| Y2(ζ∞, s) |< ε,

where ε > 0 is an arbitrarily small positive number. From now onward ε has been

taken as 10−10.
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Also, for equations (4.29) and (4.30), the following notations have been used.

θ = Z1, θ′ = Z2, θ′′ = Z ′2, φ = Z3, φ′ = Z4, φ′′ = Z ′4,

A1 =

[
1 +

4

3
R

]
, A2 =

[
A1 − Prγ1f 2

]
.

The system of equations (4.29) and (4.30), can be written in the form of the

following first order coupled ODEs.

Z ′1 = Z2, Z1(0) = 1.

Z ′2 = −Pr
A2

[
fZ2 − γ1ff ′Z2 +NbZ2Z4 +NtZ2

2

]
, Z2(0) = p.

Z ′3 = Z4, Z3(0) = 1.

Z ′4 = γ2ScZ3 − ScfY4 +
Nt

Nb

[
Pr

A2

[
fZ2 − γ1ff ′Z2 +NbZ2Z4 +NtZ2

2

]]
,

Z4(0) = q.

The RK-4 technique will be used to numerically solve the initial value problem

mentioned above. The missing conditions p and q in the above system of equations

must be selected in such a way.

Z1(ζ∞, p, q) = 0, Z3(ζ∞, p, q) = 0.

To solve the above algebaric equations, we apply the Newton’s method which has

the following scheme.

p
q

(n+1)

=

p
q

(n)

−

∂Z1

∂p
∂Z1

∂q

∂Z3

∂p
∂Z3

∂q

−1 Z1

Z3

(n)

Now, introduce the following notations,

∂Z1

∂p
= Z5,

∂Z2

∂p
= Z6,

∂Z3

∂p
= Z7,

∂Z4

∂l
= Z8.

∂Z1

∂q
= Z9,

∂Z2

∂q
= Z10,

∂Z3

∂q
= Z11,

∂Z4

∂q
= Z12.
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As the result of these new notations, the Newton’s iterative scheme gets the form.

p
q

(n+1)

=

p
q

(n)

−

Z5 Z9

Z7 Z11

−1 Z1

Z3

(n)

Now differentiating the system of four first order ODEs with respect to p, and q

we get another system of ODEs, as follows.

Z ′5 = Z6, Z5(0) = 0.

Z ′6 = −Pr
A2

[
fZ6 − γ1ff ′Z6 +Nb(Z6Z4 + Z2Z8) + 2NtZ2Z6

]
, Z6(0) = 1.

Z ′7 = Z8, Z7(0) = 0.

Z ′8 = γ2ScZ7 − ScfY8 +
Nt

Nb

[
Pr

A2

[
fZ6 − γ1ff ′Z6 +Nb(Z6Z4 + Z2Z8)

+ 2NtZ2Z6

]]
, Z8(0) = 0.

Z ′9 = Z10, Z9(0) = 0.

Z ′10 = −Pr
A2

[
fZ10 − γ1ff ′Z10 +Nb(Z10Z4 + Z2Z12) + 2NtZ2Z10

]
, Z10(0) = 0.

Z ′11 = Z12, Z11(0) = 0.

Z ′12 = γ2Scff
′Z12 − ScfY12 +

Nt

Nb

[
Pr

A2

[
fZ10 − γ1ff ′Z10

+Nb(Z10Z4 + Z2Z12) + 2NtZ2Z10

]]
, Z12(0) = 1.

The stopping criteria for the Newton’s technique is set as.

max{|Z1(ζ∞, p, q)|, |Z3(ζ∞, p, q)|} < ε.

4.4 Representation of Graphs and Tables

A detailed explanation of the numerical results in the form of figures and tables has

been discussed. The main focus of this section will be on the impact of different
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parameters on the velocity f ′(ζ), temperatture θ(ζ) and concentration distribu-

tion φ(ζ). The impact of different factors like magnetic parameter M , thermal

radiation R and Schmidt number Sc is observed graphically. Numerical outcomes

of the local Nusselt number and local Sherwood number for the distinct values

of some fixed parameters are shown in Tables 4.1. The missing initial conditions

θ(ζ) and φ(ζ) can be chosen from Ig and Ih. It is remarkable that the intervals

mentioned offer a considerable flexibility for the choice of the initial guess.

Figures 4.1 and 4.2 show the impact of Casson fluid parameter β on the velocity

profile f ′(ζ) and temperature profile θ(ζ). By increasing the value of β, the veloc-

ity of the fluid decreases and temperature increases. When Casson fluid parameter

β is incresed, the yield stress is decreased and Casson acts like Newtonain fluid.

Furthermore, it is inferred that the velocity of Casson fluid exceeds that of the

Newtonian fluid.

Figure 4.3 displays the impact of M on the velocity distribution. By rising the

values of M , the velocity distribution shows a decreasing behavior due to the pres-

ence of Lorentz force. Figure 4.4 describes the impact of M on the temperature

distribution. The temperature distribution expands by rising the values of the

magnetic parameter M .

Figures 4.5 and 4.6 illustrate the impact of Nb on the dimensionless temperature

θ(ζ) and concentration distribution φ(ζ). The behavior of temperature distribu-

tion is increased and concentration profile is decreased due to the accelerating

values of Nb.

Figure 4.7 shows the impact of thermal radiation R on the temperature distri-

bution θ(ζ). By enhancing the values of R, the temperature distribution θ(ζ) is

increased. Figure 4.8 shows the influencee of the relaxation time parameter γ1 on

the temperature proflie θ(ζ). An increment is noticed in the temperature distri-

bution by rising the values of the relaxation time parameter γ1.

Figure 4.9 depicts the effect of the Schmidt number Sc on the concentration dis-

tribution φ(ζ). This behaviour is caused by the inverse relationship between the

Schmidt number and mass diffusion rate as a result, with larger Schmidt number

Sc, the mass diffusivity process slows down, causing the concentration to decrease
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and the concentration boundary layer thickness to decrease. Figure 4.10 displays

the impact of chemical reaction parameter γ2, on the concentration distribution

φ(ζ). The concentration profile is similarly influenced by the chemical reaction

parameter γ2. Raising the value of chemical reaction parameter γ2 decreases the

concentration profile φ(ζ).

Table 4.1: Results of −(Rex)−
1
2Nux and −(Rex)−

1
2Shx with some fixed pa-

rameters γ1 = 0.1, Pr = 7.0, Sc = 0.1, K = 0.3.

M R β Nb Nt γ2 −(Rex)
− 1

2Nux −(Rex)
− 1

2Shx Ig Ih

0.2 0.25 0.5 0.1 0.1 0.1 1.564984 -1.132723 [-2.0, 2.0] [-2.0, 3.0]

0.3 1.560107 -1.129455 [-2.0, 2.5] [-2.0, 3.0]

0.4 1.555348 -1.126216 [-2.0, 2.5] [-2.0, 2.0]

0.5 1.550699 -1.123005 [-2.5, 2.5] [-1.0, 2.0]

0.2 1.0 1.170680 -0.746021 [-3.0, 2.5] [-2.0, 4.0]

2.0 0.914570 -0.496707 [-3.0, 5.5] [-1.0, 2.5]

4.0 0.666753 -0.257157 [-2.0, 2.5] [-2.0, 2.0]

0.25 1.0 1.530931 -1.108910 [-2.0, 2.5] [-2.0, 2.0]

1.5 1.512843 -1.095336 [-5.0, 2.0] [-3.0, 1.0]

2.0 1.501510 -1.086565 [-2.5, 2.0] [-4.0, 3.0]

2.5 1.493719 -1.080428 [-3.0, 2.0] [-2.5, 1.0]

3.0 1.485480 -1.0800120 [-3.0, 2.0] [-2.5, 1.0]

0.5 0.2 1.488931 -0.412639 [-1.0, 2.5] [-1.0, 2.0]

0.3 1.414460 -0.173146 [-2.5, 2.5] [-2.0, 2.5]

0.4 1.341623 -0.053813 [-3.0, 2.0] [-2.0, 2.0]

0.1 0.2 1.496339 -2.361572 [-1.5, 2.5] [-2.5, 2.5]

0.3 1.429276 -3.459243 [-2.0, 2.5] [-2.0, 2.0]

0.4 1.363825 -4.430650 [-2.0, 2.5] [-2.0, 2.0]

0.5 1.301121 -4.429145 [-2.0, 2.5] [-2.0, 2.0]

0.2 1.555783 -1.092207 [-2.0, 2.5] [-2.0, 2.0]

0.4 1.538746 -1.016528 [-3.0, 2.5] [-3.0, 2.5]

0.6 1.523276 -0.947014 [-2.0, 2.5] [-2.0, 2.0]

0.8 1.509127 -0.882721 [-1.0, 3.0] [-2.0, 2.0]
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Figure 4.1: Velocity profile f ′(ζ) due to change in β.
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Figure 4.2: Temperature profile θ(ζ) due to change in β.
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Figure 4.3: Velocity profile f ′(ζ) due to change in M .
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Figure 4.4: Temperature profile θ(ζ) due to change in M .
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Figure 4.5: Temperature profile θ(ζ) due to change in Nb.
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Figure 4.6: Concentration profile φ(ζ) due to change in Nb.



Numerical Solution of Cattaneo-Christov 57

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R=1.0

R=3.0

R=5.0

R=7.0

Sc=2.0, 
1
=

2
=0.1, M= =0.2,

 Nt=Nb=0.5, Pr=7.0, K=2.0

Figure 4.7: Temperature profile θ(ζ) due to change in R.
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Figure 4.8: Temperature profile θ(ζ) due to change in γ1.
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Figure 4.9: Concentration profile φ(ζ) due to change in Sc.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2
=0.2

2
=0.3

2
=0.4

2
=0.5

Sc=2.0, 
1
=0.1, M= =0.2, K=2.0,

    Nt=Nb=0.5, Pr=7.0, R=5.0

Figure 4.10: Concentration profile φ(ζ) due to change in γ2.



Chapter 5

Conclusion

In this thesis, the work of Kho et al. [49] is reviewed and extended with the effect

of Cattaneo-Christov heat flux model and chemical reaction. First of all, the

governing nonlinear PDEs are converted into a system of dimensionless ODEs by

utilizing the appropriate transformations. The shooting technique has been used

for the calculation of numerical results along with RK4. Using different values

of the governing physical parameters, the results are presented in the form of

table and graph for f ′(ζ), θ(ζ) and φ(ζ) profiles. The achievements of the current

research can be summarized as below:

• The temperature profile rises while the velocity profile falls when M is in-

creased.

• For the enhancing values of R, the temperature distribution is increased.

• The velocity profile is decreased due to the increasing values of the Casson

fluid paramater β.

• Increasing the magnetic parameter M results in a rise in the skin friction

coefficent.

• Ascending values of Nt cause the Nusselt number to decrease.

• With a rise in Nb, the temperature profile increases.
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• Due to the ascending values of β, the numerical values of skin friction coef-

ficent Cf is increased.

• The rise in values of the relaxation time parameter γ1 results in an decrease

in the temperature profile.

• Due to the ascending values of the chemical reaction parameter γ2, the values

of Nux are decreased while Shx is increased.
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